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CHAPTER 1

Introduction to the Shapley value

Alvin E. Roth

Among the obligations facing a community of scholars is to make accessi-
ble to a wider community the ideas it finds useful and important. A
related obligation is to recognize lasting contributions to ideas and to
honor their progenitors. In this volume we undertake to fill part of both
obligations.

The papers in this volume review and continue research that has grown
out of a remarkable 1953 paper by Lloyd Shapley. There he proposed that
it might be possible to evaluate, in a numerical way, the “value” of playing
a game. The particular function he derived for this purpose, which has
come to be called the Shapley value, has been the focus of sustained
interest among students of cooperative game theory ever since. In the
intervening years, the Shapley value has been interpreted and reinter-
preted. Its domain has been extended and made more specialized. The
same value function has been (re)derived from apparently quite different
assumptions. And whole families of related value functions have been
found to arise from relaxing various of the assumptions.

The reason the Shapley value has been the focus of so much interest is
that it represents a distinct approach to the problems of complex strategic
interaction that game theory seeks to illuminate. To explain this, we need
to recount some history of game theory. (Even when we are not speaking
of the Shapley value, the history of game theory is inextricably connected
with other aspects of Shapley’s work. To avoid too many diversions, we
defer discussion of Shapley’s other work until the concluding section of
this introduction.)

Although game-theoretic ideas can be traced earlier, much of the mod-
ern theory of games traces its origins to the monumental 1944 book by
John von Neumann and Oskar Morgenstern, Theory of games and eco-
nomic behavior. In seeking a way to analyze potentially very complex
patterns of strategic behavior, their approach was to, in their phrase,
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2 Alvin E. Roth

“divide the difficulties,” by finding simple models of the strategic envi-
ronment itself.

Their first step was to find a way to summarize each alternative facing
an individual decision maker by a single number. Their solution to this
problem - expected utility theory —has left its own indelible mark on eco-
nomic theory, quite independently of the impact the theory of games has
had. Briefly, their contribution was to specify conditions on an individ-
ual’s preferences over possibly risky alternatives sufficient so that his
choice behavior could be modeled as if, faced with a choice over any set of
alternatives, he chose the one that maximized the expected value of some
real-valued function, called his utility function. In this way, a complex
probability distribution over a diverse set of alternatives could be summa-
rized by a single number, equal to the expected utility of the lottery in
question.

Having reduced the alternatives facing each individual to a numerical
description, von Neumann and Morgenstern proceeded to consider
(among other things) a class of games in which the opportunities available
to each coalition of players could also be described by a single number.
They considered cooperative games in characteristic function form (now
sometimes also called “coalitional form™) defined by a finite set N =
{1, . . . ,n) of players, and a real-valued “characteristic function” o,
defined on all subsets of N (with v(¢h) = 0). The interpretation of v is that
for any subset S of N the number v(S) is the worth of the coalition, in
terms of how much “utility”” the members of .S can divide among them-
selves in any way that sums to no more than v(S) if they all agree. The only
restriction on v that von Neumann and Morgenstern proposed was that it
be superadditive; that is, if S and T are two disjoint subsets of N, then
v(S U T) = v(S) + o(T). This means that the worth of the coalition S U T
is equal to at least the worth of its parts acting separately.

The characteristic function model assumes the following things about
the game being modeled. First, utility can be embodied in some medium
of exchange - “utility money” —-that is fully transferable among players,
and such that an additional unit of transferable utility always adds a unit
to any player’s utility function. (For example, if all players are risk neutral
in money —that is, if their utility functions are all linear in money-then
ordinary money can be the necessary medium of exchange in a game in
which all outcomes can be evaluated in monetary terms and in which
money is freely transferable.) Second, the possibilities available to a coali-
tion of players can be assessed without reference to the players not in-
cluded in the coalition. Third, a coalition can costlessly make binding
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agreements to distribute its worth in any way agreed to by all the mem-
bers, so it is not necessary to model explicitly the actions that players must
take to carry out these agreements. In recognition of the importance of the
assumption that utility is transferable, these games are sometimes called
transferable utility (TU) games.

Although these simplifying assumptions are obviously substantial, the
characteristic function model has proved to be surprisingly useful as a
simple model of strategic interaction. Consider, for example, the interac-
tion between a potential seller and two potential buyers of some object
that the seller (the current owner) values at ten dollars, the first buyer
values at twenty dollars, and the second buyer values at thirty dollars. If
the players can freely transfer money among themselves, and if they are
risk neutral (although for many purposes this latter assumption is not
really necessary), this situation can be modeled as the game I'; = (V,v)
with players N={1,2,3} and » given by »(1)= 10, v(2)=0v(3)=
v(23) =0, v(12) = 20, v(13) = v(123) = 30. This reflects the fact that
only coalitions containing the seller, player 1, and at least one buyer can
engage in any transactions that change their collective wealth. A coalition
that contains player 1 is worth the maximum that the object in question is
worth to any member of the coalition.

The tools of cooperative game theory applied to this model reflect some
of the important features of such an interaction. For example, the core of
the game [which for TU games is equal to the set of payoff distributions
with the property that the sum of the payoffs to the members of each
coalition S'is at least v(S)] corresponds to the set of outcomes at which the
seller sells to the buyer with the higher reservation price, at some price
between twenty and thirty dollars, and no other transfers are made. This
corresponds to what we would expect if the buyers compete with each
other in an auction, for example. Von Neumann and Morgenstern pro-
posed a more comprehensive kind of ““solution™ for such a game, which
today is called a stable set or a von Neumann-Morgenstern solution.
There are infinitely many von Neumann -Morgenstern solutions to this
game, each of which consists of the core plus a continuous curve corre-
sponding to a rule for sharing between the two buyers the wealth at each
price less than twenty dollars (should they be able to agree to avoid
bidding against one another, for example).

Von Neumann and Morgenstern’s interpretation of this multiplicity of
solutions was that each represented a particular “‘standard of behavior”
that might be exhibited by rational players of the game. Which standard of
behavior we might expect to observe in a particular game would generally
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depend on features of the environment - for example, institutional, social,
or historical features—not modeled by the characteristic function. Thus
their view was that much of the complexity of strategic interactions that
was omitted from the characteristic function model reemerged through
the complexity of the set of solutions. This very complexity nevertheless
made it difficult to make a simple evaluation of a game in terms of its von
Neumann-Morgenstern solutions. Partly for this reason, much of the
subsequent analysis of such games has focused instead on the core. Al-
though the core is much simpler than the von Neumann -Morgenstern
solutions, it may be empty in some games and a large set of outcomes in
others. And various “noncompetitive” modes of behavior (such as the
formation of a bidders’ cartel in our earlier example) might lead to out-
comes outside the core, so a great deal of complexity remains.

This complexity is to a large extent a reflection of the underlying
complexity of strategic interaction. Indeed, much current work in game
theory is in the direction of putting more institutional and other detail
into game-theoretic models in order to be able to more fully describe and
better understand these complexities. ( To a certain extent the same can be
said of individual choice theory, in which there has been in recent years
some exploration of more complex models than utility maximization.)
However the underlying complexity of the phenomena only increases the
need for a simple way to make a preliminary evaluation of games.

1 The Shapley value

Shapley’s 1953 paper (reprinted as Chapter 2 of this volume) proposed to
fill this need, essentially by carrying the reductionist program of von
Neumann and Morgenstern a step further. Because it had proved so
useful to represent each alternative facing a player by a single number
expressing its expected utility, and to summarize the opportunities facing
a coalition in a game by a single number expressing its worth in units of
transferable utility, Shapley proposed to summarize the complex possibil-
ities facing each player in a game in characteristic function form by a
single number representing the “value” of playing the game. Thus the
value ofagame withaset N= {1, . . . ,n} of players would be a vector of
n numbers representing the value of playing the game in each of its »
positions. The connection to what I have called the reductionist program
of von Neumann and Morgenstern is made clearly in the first paragraph
of Shapley’s paper, which begins “At the foundation of the theory of
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games is the assumption that the players of a game can evaluate, in their
utility scales, every ‘prospect’ that might arise as a result of a play. . . .
[O]ne would normally expect to be permitted to include, in the class of
‘prospects,” the prospect of having to play a game.”

Shapley’s approach was to consider the space of all games that might be
played by some potentially very large set of players (denoted by the letter
U, to signify the universe of all possible players). In a particular game v, the
players actually involved are contained in any carrier, which is a subset N
of Usuch that v(S) = v(S N N) for any subset of players .S C U. Ifa carrier
N for a game v does not contain some player £, then i is a null player,
because / does not influence the worth v(S) of any coalition S. So any set
containing a carrier is itself a carrier of a game, and any player not
contained in every carrier is a null player.

Shapley defined a value for games to be a function that assigns to each
game v a number ¢, (v) for each i in U. He proposed that such a function
obey three axioms. The symmetry axiom requires that the names of the
players play no role in determining the value, which should be sensitive
only to how the characteristic function responds to the presence of a
player in a coalition. In particular, the symmetry axiom requires that
players who are treated identically by the characteristic function be
treated identically by the value.

The second axiom, usually called the carrier axiom, requires that the
sum of ¢;(v) over all players i in any carrier N equal v(V). Because this
must hold for any carrier, it implies that ¢,(v) = 0 if / is a null player in v.
Sometimes this axiom is thought of as consisting of two parts: the effi-
ciency axiom (Z;c y®;(v) = v(N) for some carrier N), and the null player
(or sometimes “dummy player”!) axiom.

The third axiom, now called the additivity axiom, requires that, for any
games v and w, ¢(v) + (W) = d(v + w) (i.e., d;(v) + b;(W) = (v + w)
for all i in U, where the game [v+ w] is defined by [v + w](S) =
v(S) + w(S) for any coalition S). This axiom, which specifies how the
values of different games must be related to one another, is the driving
force behind Shapley’s demonstration that there is a unique function ¢
defined on the space of all games that satisfies these three axioms.

The easiest way to understand why this function exists and is unique is
to think of a characteristic function v as a vector with 2V — 1 components,
one for each nonempty subset of U. (For simplicity, take the universe U of
players to be finite.) Then the set G of all (not necessarily superadditive)
characteristic function games coincides with euclidean space of dimen-
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sion 2Y — 1. The additivity axiom says that if we know a value function on
some set of games that constitute an additive basis for G, then we can
determine the value for any game.

A set of games that will permit us to accomplish this is the set consisting
of the games vz, defined for each subset R of U by

ve(S)y=1 ifRCS,
=0 otherwise.

Any player not in Ris a null player in this game, which is sometimes called
the pure bargaining or unanimity game among the players in R, because
they must all agree among themselves how to split the available wealth.
Because the players in R are all symmetric, the symmetry axiom requires
that ¢;(vg) = @;(vg) for all i and j in R. Because the null player axiom
requires that ¢, (vg) = O for all knot in R, the efficiency axiom allows us to
conclude that ¢;(vg) = 1/rforalliin R, where risthe number of playersin
R. (For any finite coalition S, we will denote by s the number of players in
S.) Thus the value is uniquely defined on all games of the form v, or, for
that matter, on games of the form cvg for any number ¢ (where cvg(S) = ¢
if R C S and 0 otherwise). (Note that cvy is superadditive when c is non-
negative.)

But the games vy form a basis for the set of all games, because there are
2V — 1 of them, one for each nonempty subset R of U, and because they
are linearly independent. Therefore any game v can be written as the sum
of games of the form cvg . (For example, the game I', discussed earlier with
one seller and two buyers is given by I'} = 100y, + 100, + 200,35, —
100;123.) And so the additivity axiom implies that there is a unique value
obeying Shapley’s axioms defined on the space of all games.

Shapley showed that this unique value ¢ is

(s— Di(n—s)
n!

{
)= 3 - [u(S) — (S —1)],

SCN
where N is any finite carrier of v, with | V| = n. This formula expresses the
Shapley value for player i in game v as a weighted sum of terms of the form
[v(S) — v(S — i)], which are player i’s marginal contribution to coalitions
S. (In Chapter 17 Peyton Young shows how the Shapley value may be
axiomatized in terms of the marginal contributions.) In fact, ¢,(v) can be
interpreted as the expected marginal contribution of player i, where the
distribution of coalitions arises in a particular way.

Specifically, suppose the players enter a room in some order and that
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all n! orderings of the players in N are equally likely. Then ¢;() is the
expected marginal contribution made by player / as she enters the room.
To see this, consider any coalition S containing i and observe that the
probability that player i enters the room to find precisely the players in
S — i already there is (s — 1)}(n — s)l/n!. (Out of 1! permutations of N
there are (s — 1)! different orders in which the first s — 1 players can
precede I, and (n — s)! different orders in which the remaining # — s
players can follow, for a total of (s — 1)i(n — s)! permutations in which
precisely the players S — i precede i.)

Although this is not meant to be a literal model of coalition formation
(a topic that will be addressed by two of the papers in this volume),
thinking of the value in this way is often a useful computational device. In
our example of one seller and two buyers, the three players can enter in six
possible orders. If they enter in order 1,2,3, their marginal contributions
are (0,20,10), and their Shapley values are the average of these marginal
contributions over all six orders: ¢(v) = (18.33,3.33,8.33).

For a more challenging example, consider a game loosely modeled on
the United Nations Security Council, which consists of fifteen members.
Five of these are permanent members and have a veto, and ten are rotat-
ing members. The voting rule is that a motion is passed if it receives nine
votes and no vetoes. We model this here by taking v(S) = 1 if S contains
all five permanent members and four or more other members, and
v(S) = 0 otherwise.

Because 15! is a number on the order of 102, we obviously cannot
proceed to calculate the Shapley value by enumerating all possible order-
ings of the players. But we can use the random-order property, together
with symmetry and efficiency, to calculate the value. To do this, note that
by symmetry all rotating members have the same value ¢,(v), all perma-
nent members have the same value ¢,(v), and efficiency requires that
106, (v) + 5¢,(v) = 1. In order for a rotating member to make a positive
marginal contribution in a random order, all five permanent members
and exactly three of the other nine rotating members must precede him or
her. There are 9!/3! 6! such coalitions, corresponding to the different ways
to choose three out of the nine other rotating members. As we said, each
such coalition S (of size s = 9) occurs with probability (s — 1)i(n — s)i/n!,
and the marginal contribution of the last rotating member is [v(S) —
v(S — )] = 1. So the Shapley value of a rotating member is ¢,(v) = (9!/
316!1)(816!/15!) = .00186, and the Shapley value of a permanent member is
&, (v) = (1 — 10¢,(v))/S = .196, which is over 100 times greater.
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1.1 The Shapley- Shubik Index

The results of a similar calculation, using the then existing rules of the
Security Council, are described in the 1954 paper of Shapley and Martin
Shubik, which is reprinted as Chapter 3. That paper was the first to
propose applying the Shapley value to the class of simple games, which are
natural models of voting rules.

A simple game is a game represented by a characteristic function v that
takes on only the values 0 and 1. A coalition S is called winning if
v(S) = 1, and losing if v(S) = 0, and the usual assumption is that every
coalition containing a winning coalition is itself winning or, equivalently,
that every subset of a losing coalition is itself a losing coalition. (A simple
game is called proper if the complement of a winning coalition is always
losing.) If v is a simple game among some set N of players, then an
equivalent representation is simply the list of winning coalitions of N, or
even the list of minimal winning coalitions (i.e., winning coalitions none
of whose subsets are winning). For some classes of games, even terser
representations may be natural: For example, a “weighted majority
game” with n voters, such as might arise among the stockholders of a
corporation, can be represented by the vector [g; w,, . . . ,w,], where w;
denotes the number of votes cast by player i, and g denotes the number of
votes needed by a winning coalition. The winning coalitions are then
precisely those coalitions S with enough votes; that is, S'is winning if and
onlyif Z,cqw; = q.

Because simple games are essentially no more than lists of winning
coalitions, they are often natural models of situations in which the fuil
weight of the usual assumptions about characteristic function games may
not be justified. Thus, for example, we may want to model a bicameral
legislature by noting that the winning coalitions are those containing a
majority of members in each house, and without assuming that the log-
rolling opportunities available to members are sufficient so that a winning
coalition can divide up the spoils in a transferable utility way. When we
are interpreting a simple game as something other than a transferable
utility characteristic function game, we may want to interpret the Shapley
value of each player differently than we otherwise would. In recognition of
this, the Shapley value applied to simple games is often called the
Shapley- Shubik index. The marginal values [v(S) — v(S — i)] inasimple
game are always equal to O or 1, so a player’s Shapley-Shubik index
equals the proportion of random orders in which he or she is a “pivotal”
player, the proportion of orders in which the set of players S — i who
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precede him or her form a losing coalition that is transformed into a
winning coalition S by the arrival of player i. (In each ordering of the
players, only one player is pivotal.)

Analyzing voting rules that are modeled as simple games abstracts
away from the particular personalities and political interests present in
particular voting environments, but this abstraction is what makes the
analysis focus on the rules themselves rather than on other aspects of the
political environment. This kind of analysis seems to be just what is
needed to analyze the voting rules in a new constitution, for example, long
before the specific issues to be voted on arise or the specific factions and
personalities that will be involved can be identified.

The task of assessing how much influence a voting system gives to each
voter has assumed legal importance in evaluating legislative reapportion-
ment schemes, following court rulings that valid schemes must give voters
equal representation (i.e., must be systems that give ‘“one man, one
vote”). This has proved a difhcult concept to define when voters are
represented by legislators elected by district, particularly in systems in
which districts of different sizes may be represented by different numbers
of legislators or by legislators with different numbers of votes. A measure
of voter influence related to the Shapley - Shubik index, called the Banz-
haf index after the lawyer who formulated it in this context (Banzhaf
1965, 1968; Coleman 1971; Shapley 1977), has gained a measure of legal
authority, particularly in New York State, in court decisions concerning
these issues (Lucas 1983). Instead of looking at random orders of players,
the Banzhaf index simply counts the number of coalitions in which a
player is a “swing” voter. That is, the Banzhafindex of a voter i is propor-
tional to the number of coalitions S such that S is winning but § — i is
losing. (A comprehensive treatment of the mathematical properties of the
Banzhaf index is given by Dubey and Shapley 1979). Although the Banz-
haf and Shapley - Shubik indices have certain obvious similarities, in any
particular game they may not only give different numerical evaluations of
a player’s position but they may rank players differently, so the voter with
more influence according to the Shapley-Shubik index may have less
influence according to the Banzhaf index.

2 The other papers in this volume

Chapters 2 and 3, by Shapley and by Shapley and Shubik, are the “ances-
tral” papers from which the rest of the papers in this volume follow.
Chapters 4 through 10 are concerned with reformulating these ideas in
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order to better understand them. As often as not, these reformulations
also lead to generalizations, so by coming to understand the Shapley value
or Shapley - Shubik index in new ways, we are also led to different ways to
assess the value of playing a game or of measuring the influence of a voter.

2.1 Reformulations and generalizations

Chapter 4, “The expected utility of playing a game,” investigates the
implications of taking seriously the idea that the Shapley value can be
interpreted as a utility function. It turns out that there is a strong and
precise analogy between the Shapley value as a utility for positions in
games and the expected value as a utility for monetary gambles, because
both are risk-neutral utility functions. However, two kinds of risk neutral-
ity are involved in interpreting the Shapley value as a utility: The first
involves gambles (“‘ordinary risk”) among games, and the second in-
volves games that need not involve any probabilistic uncertainty but only
the strategic risk associated with the unknown outcome of the interac-
tions among the players. Neutrality to ordinary risk turns out to be equiv-
alent to additivity of the utility function, and neutrality to strategic risk
turns out to be closely associated with the efficiency axiom. The class of
utility functions that represent preferences that are not neutral to strategic
risk (and that are therefore “inefficient” value functions) is also character-
ized, provided that the preferences remain neutral to ordinary risk over
games. (The characterization of utilities for preferences that are not neu-
tral to ordinary risk remains an open problem.) The chapter concludes by
considering the implications of this for understanding the comparisons
among positions in games that are implicit in the Shapley value.

Philip Straffin’s chapter, “The Shapley-Shubik and Banzhaf power
indices as probabilities,” is concerned with simple games, and shows that
both the Shapley-Shubik and Banzhaf indices can be interpreted as the
answer to the question: “What is the probability that a given voter’s vote
will affect the outcome of the vote on a bill?”” To pose this question, one
needs to specify a model of voter probabilities. Straffin observes that the
Shapley-Shubik index answers this question if we assume voters’ opin-
ions are homogeneous in a certain sense, and the Banzhaf index gives the
answer if we assume voters’ opinions are independent in a particular way.
His analysis not only casts new light on the similarities and differences
between these two indices, but also suggests how this method of modeling
voters might be adapted to particular situations to create new indices
when other assumptions about voters are appropriate.
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Ehud Kalai and Dov Samet, in “Weighted Shapley values,” consider
the class of value functions that need not be symmetric but obey Shapley’s
other axioms. In other words, they report on possible generalizations of
the Shapley theory that apply to nonanonymous players. This line of work
was begun by Shapley in his dissertation (Shapley 1953b), who introduced
the nonanonymity by assigning different positive weights to the players.
In a pure bargaining game v, the players in R receive payoffs proportional
to their weights. Owen (1968) provided an interpretation of the weighted
Shapley values by considering random arrival times. A high weight corre-
sponds to a high probability of arriving later. Kalai and Samet consider
more general lexicographic weight systems. Using a novel consistency
axiom in place of symmetry, they show that all such values must be of this
generalized weighted type. Their “partnership consistency” axiom con-
cerns players who are only valuable to a coalition when they are in it
together. They also discuss a family of dual weighted values that have
natural interpretations in cost allocation problems (Shapley 1983). These
values are in turn characterized by an axiom system that contains a dual to
the partnership consistency axiom, and it is shown that when the two
axioms are imposed together they yield the (symmetric) Shapley value. As
a consequence of these characterizations, for consistent values, lack of
symmetries between players may be viewed as being due to asymmetries
in size. That is, different players may be viewed as representing “blocks”
of different sizes. (A recent result by Monderer, Samet, and Shapley shows
that the set of weighted Shapley values of a given game always contains the
core of the game. Coincidence of the two sets occurs ifand only if the game
is convex.)

In “Probabilistic values for games,” Robert Weber returns to the con-
sideration of symmetric values that need not be efficient, as well as effi-
cient values that need not be symmetric. He pays careful attention to the
effect of applying the axioms to different classes of games, including
superadditive and simple games, and observes that on sufficiently rich
classes of games the values obtained by discarding the efficiency axiom
can all be characterized as expected marginal contributions. He draws a
different connection than that developed in Chapter 4 between values
that do not assume efficiency and a kind of strategic risk aversion of the
player evaluating the game.

In Chapter 8, Uriel Rothblum considers three formulas for the Shapley
value that differ from its representation as the expected marginal contri-
bution when all orders are equally likely. It is important to recognize that
the random-order representation, although familiar and useful, has no
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special status. In particular, the significance of the Shapley value does not
rest on the stylized model of “coalition formation” embodied in the
standard formula. Rothblum presents three other, equivalent, formulas
for the Shapley value, each of which permits us to compute it as a kind of
average taken over coalitions of the same size. Just as the random-order
representation has proved useful in facilitating certain kinds of computa-
tions (as in the computation involving the Security Council example),
each of these other representations can be of similar use for games whose
special structure makes one of these other averages easy to compute.

In “The potential of the Shapley value,” Sergiu Hart and Andreu
Mas-Colell carry a step further the reductionist program begun by von
Neumann and Morgenstern and continued by Shapley. Instead of sum-
marizing the opportunities available to each player in a game by a single
number, and thus summarizing the game by a vector, Hart and Mas-
Colell propose to summarize each game by a single number, P(V,v), to be
called its potential. (1 have spoken of a reductionist program in terms of
models: utility, characteristic functions, values, and now potentials. Hart
and Mas-Colell speak of a parallel program in terms of solution concepts:
stable sets, core, value, and potential.) The marginal contribution of a
player in terms of the potential is the difference P(N,v) — P(N — i,v), that
is, the difference between the potential of the game with its full set N of
players and the game without player /. Strictly speaking, Hart and Mas-
Colell define a function on games to be a potential only if the sum of these
marginal contributions over all the players equals v(NV), and they show
that there is a unique such potential with respect to which each player’s
marginal contribution equals his or her Shapley value. (And thus the use
of the term potential conforms to standard mathematical usage, because
the potential of a vector-valued function ¢ is a real-valued function P
whose gradient is ¢b.) Representing the value by the potential proves to be
a useful technical tool (at least one with great potential), as is shown by the
results concerning the consistency of the value. As the authors remark,
this treatment provides a natural approach for viewing the Shapley value
as a tool for cost allocation (a subject to which we will return), although
their caution about avoiding inappropriate interpretations is well taken.

The final chapter in this section, “Multilinear extensions of games” by
Guillermo Owen, could well have been grouped with the chapters on large
games, because it concerns an extension of the characteristic function
model that permits a large-game interpretation, among others. For a game
played by n players, consider an n-dimensional unit cube. Its vertices,
which are vectors of 0’sand 1’s, can be interpreted as coalitions of players,
with player i being in the coalition associated with a given vertex if the ith



Introduction to the Shapley value 13

component of the associated vector is a 1. Owen defines the multilinear
extension of a given characteristic function v as a function defined on the
whole cube, which agrees with v on the vertices and interpolatesin a linear
way on other parts of the cube. Owen shows that this extension provides a
powerful computational and conceptual tool. Points in the cube other
than vertices can be interpreted in various ways. The large-game interpre-
tation arises, for example, if we view each of the n players of the game as
representing a continuum of players of a certain type. Then a point in the
cube can be interpreted as corresponding to a coalition of players, with the
ith coordinate indicating the percentage of players of type / in the coali-
tion. It turns out that the Shapley value is determined by the value of the
multilinear extension only on the “main diagonal” of the cube (i.e., on
the points of the cube in which all #» components are equal). This “diago-
nal property,” which plays a significant role in the study of the values of
large games (see, e.g., Neyman 1977), has a natural intuitive interpreta-
tion in that context related to the random-order property of the Shapley
value. In a game with finitely many types of players, consider a coalition
of some size arising from the random entry of players (think of the num-
ber of players of each type as very large but finite, in order to avoid for the
moment the difficulties with defining a random order of an infinite
game). Then by the law oflarge numbers, most of the coalitions of this size
will have the same proportion of each type of player as is found in the
game as a whole. The diagonal property says that only such coalitions
need be considered in computing the Shapley value.

2.2 Coalitions

The next two chapters deal with attempts to use the Shapley value and
related concepts to begin to develop the elements of a theory of how
players in a game might choose to organize themselves, which remains
one of the most difficult and important problems in game theory. The
traditional approach to this problem has been to consider coalition struc-
tures, which are partitions of players into disjoint coalitions. In order to
consider how players might organize themselves into coalitions, one first
must be able to assess how any given structure of coalitions will influence
each player’s payoff. “Coalitional value,” by Mordecai Kurz considers
some ways in which the Shapley value may be adapted to this task, and
goes on to consider some ways in which the answers to this question can
inform the discussion of which coalitions might be expected to form.
The chapter by Robert Aumann and Roger Myerson uses an extension
of the Shapley value proposed earlier by Myerson, to suggest a novel



